Clinical Evaluation of the Venous System of the Lower Extremity

A screening examination of the venous system should be performed before performing sclerotherapy. Prior to treatment, the phlebologist must first investigate three conditions: the presence of poorly visible varicose veins proximal to or underlying the veins to be treated, deep venous or perforator valvular insufficiency, and deep venous thrombosis [5]. If there is a proximal source of superficial or deep venous reflux of blood, injection of distal telangiectasias solely will not defend against a recurrence. Subsequently, treatment of these “feeder” vessels may be necessary to ensure complete eradication of the problem. Successful sclerosis of superficial varicose veins may be rendered unsuccessful if perforating vein valvular insufficiency goes untreated.Perforating vein valvular insufficiency can lead to the development of other varicosities or telangiectasias. If the patient has deep venous valvular insufficiency, sclerotherapy of superficial varicose veins may also be inadvisable. In this setting, it is possible that the patient may encounter more severe pain when walking following sclerotherapy treatment, as the development of superficial varicose veins may have been a compensatory mechanism for an incompetent deep venous system. This is known as venous claudication [5]. Finally, because varicose veins are a risk for the development of deep venous thrombosis, a screening procedure to rule out this condition is required.
Fig. 8.4A–D. Interpreting the Brodie-Trendelenburg test. A Nil: no distention of the veins for 30 s both while the tourniquet remains on and also after it is removed implies a lack of reflux. B Positive: distention of the veins only after the tourniquet is released implies reflux only through the saphenofemoral junction (SFJ). C Double positive: distention of the veins while the tourniquet remains on and further distention after it is removed implies reflux through perforating veins as well as the SFJ. D Negative: distention of the veins while the tourniquet remains on and no additional distention once it is removed implies reflux only through perforating veins. (Reprinted with permission from Goldman MP (1991) Sclerotherapy: Treatment of varicose and telangiectatic leg veins. Mosby, St. Louis.)
Fig. 8.4A–D. Interpreting the
Brodie-Trendelenburg test.
A Nil: no distention of the veins
for 30 s both while the tourniquet
remains on and also after it is
removed implies a lack of reflux.
B Positive: distention of the veins
only after the tourniquet is
released implies reflux only
through the saphenofemoral
junction (SFJ). C Double
positive: distention of the veins
while the tourniquet remains on
and further distention after it is
removed implies reflux through
perforating veins as well as the
SFJ. D Negative: distention of
the veins while the tourniquet
remains on and no additional
distention once it is removed
implies reflux only through
perforating veins. (Reprinted with
permission from Goldman MP
(1991) Sclerotherapy: Treatment
of varicose and telangiectatic leg
veins
. Mosby, St. Louis.)

Examination of the venous system of the lower extremities can be performed without the aid of technologically advanced equipment. With the patient’s entire leg exposed, visual inspection is performed. A diagram of the visual varicosities and telangiectasias, noting bulges and fascial defects, is recorded. Importantly, fascial defects may be associated with incompetent perforator veins 50–70% of the time [4]. With the patient’s leg elevated, detection of fascial defects is performed by running the examiners finger along the course of a varicosity. Depressions within the subcutaneous tissue should be marked. Incompetence of these perforating veins can be detected by having the patient stand while the examiner holds pressure on these points. If the varicose vein fails to reappear with the patient standing, release of each finger, one at a time, distally to proximally, is performed. The release point at which the varicosity reappears is marked. This site represents the most distal incompetent perforating vein [4, 5].

A clinical sign of valvular incompetence of the saphenous venous system is demonstrated by palpating for an impulse over a segment of the greater saphenous vein when the patient coughs. The presence of an impulse with coughing implies incompetence of the valve(s) proximal to this segment (cough test) [2, 4].

The percussion/Schwartz test is performed by placing one hand over the saphenofemoral junction or the saphenopopliteal junction while the other hand is used to tap lightly on a distal portion of the long or short saphenous vein. The presence of an impulse implies valvular insufficiency in the segment between the two hands [2, 4]. Palpating over the long or short saphenous vein while tapping on a dilated tributary, or vice versa, can detect whether the tributary is in direct connection with the long or short saphenous vein. False negatives can be seen in patients with previous groin surgery, obesity, and in patients with variations in their venous anatomy.

Once the dilated veins of the leg are marked, the Brodie-Trendelenburg test can be performed. With the patient in the supine position and the leg elevated 60°, emptying the varices of blood by stroking distally to proximally is performed, and a tourniquet is placed around the proximal thigh. The patient then stands up, and the leg is observed for 30 s with the tourniquet in place. The following responses can be seen:
  • “Nil” test: (Competent valves of the deep and perforating veins and at the saphenofemoral junction): No distention of the veins for 30 s both with the tourniquet in place and after removal
  • “Positive” test: (Incompetent valve at the saphenofemoral junction): Distention of the veins only after release of the tourniquet
  • “Double” positive test: (Incompetent deep and perforating veins, with reflux through the saphenofemoral junction): Distention of veins with the tourniquet in place and further distention after release
  • “Negative” test: (Deep and perforating valvular insufficiency): Distention of veins within 30 s of the tourniquet in place, and no increased filling after release of the tourniquet. However, filling of the vein(s) after 30 s of tourniquet placement does not imply competence of perforating veins (Fig. 8.4) [2].
The Perthes’ test is performed by placing a tourniquet around the proximal thigh with the patient in the supine position. Then, as the patient ambulates, a decrease in distension of varicosities implies a primary process without existing deep venous system disease. A constant distention implies a secondary process with impairment of the calf-muscle pump and deep venous patency, and an increase in distension implies deep venous obstruction [2, 4, 5].

Placing a tourniquet around the calf right below the popliteal fossae with the patient in the supine position can help to determine perforator valvular dysfunction. An indication of incompetent perforating veins occurs when the veins become more prominent and dilated as the patient ambulates [2, 4, 5].
These “hands-on” tests supply information but are not precise. These tests also do not recognize deep vein thrombosis and are not the most effective means of localizing abnormal valves. Discussion of noninvasive diagnostic techniques follows.